Refine Your Search

Topic

Author

Search Results

Technical Paper

Simultaneous Measurement of In-Cylinder Temperature and Residual Gas Concentration in the Vicinity of the Spark Plug by Wavelength Modulation Infrared Absorption

2007-04-16
2007-01-0639
This paper presents a new measurement technique for in-cylinder gas temperature and residual gas concentration during the compression stroke of an internal combustion (IC) engine. This technique is based on the infrared absorption of water vapor by a wavelength modulated laser. Wavelength modulation spectroscopy with second harmonic detection (WMS-2f) was adopted to enable the short-path measurements over a wide range of temperatures and pressures corresponding to the late compression stroke in a typical automotive engine. The WMS-2f signal is detected through a bandpass filter at a width of 7.5 kHz, enabling crank angle-resolved measurements. The temperature is determined from the ratio of optical absorption for two overtone transitions of water vapor in the intake gas mixture, and the H2O concentration is determined from this inferred temperature and the absorption for one of the transitions.
Technical Paper

In-line Hydrocarbon (HC) Adsorber System for Reducing Cold-Start Emissions

2000-03-06
2000-01-0892
An adsorber system for reducing cold-start hydrocarbon (HC) emissions has been developed combining existing catalyst technologies with a zeolite-based HC adsorber. The series flow in-line concept offers a passive and simplified alternative to other technologies by incorporating one additional adsorber substrate into existing converters without any additional valving, purging lines, secondary air, or special substrates. Major technical issues to be resolved for practical use of this system are 1) the ability to adsorb a wide range of HC molecular sizes in the cold exhaust gas and 2) the temperature difference between HC desorption from the adsorber and activation of the catalyst to convert desorbed HCs. This paper describes the current development status of hydrocarbon adsorber aftertreatment technologies. We report results obtained with a variety of adsorber properties, washcoat structures of adsorber catalyst and start-up and underfloor catalyst system combinations.
Journal Article

Development and Application of Ring-Pack Model Integrating Global and Local Processes. Part 2: Ring-Liner Lubrication

2017-03-28
2017-01-1047
A new ring pack model has been developed based on the curved beam finite element method. This paper describes the second part of this model: simulating oil transport around the ring pack system (two compression rings and one twin-land oil control ring (TLOCR)) through the ring-liner interfaces by solving the oil film thickness on the liner. The ring dynamics model in Part 1 calculates the inter-ring gas pressure and the ring dynamic twist which are used in the ring-liner lubrication model as boundary conditions. Therefore, only in-plane conformability is calculated to obtain the oil film thickness on the liner. Both global process, namely, the structural response of the rings to bore distortion and piston tilt, and local processes, namely, bridging and oil-lube interaction, are considered. The model was applied to a passenger car engine.
Technical Paper

Reduction in Exhaust Noise Through Exhaust Valving Modifications Achieved with a Gas Dynamics Simulation Model

1991-02-01
910617
One of advanced requirements in current high output power engine design, as is seen in a four valve engine, is to reduce the exhaust noise without a reduction in engine performance. In order to examine the relationship between output and exhaust noise level, a gas dynamics simulation model was extended so as to predict the exhaust generated noise. The gas dynamics model used in this study is developed based on a finite difference method in which unsteady compressible flow is solved by two-step Lax-Wendroff method. Using this simulation model, timing changes were found to be effective in reducing the exhaust noise level without showing any trade-off on engine performance. These results were validated by the experiment.
X